龙雪之樱的博客

雪花千转酿香尘,一水三千素平生
私信 关注
龙雪之樱
码龄3年
  • 484,261
    被访问量
  • 196
    原创文章
  • 11,453
    作者排名
  • 117
    粉丝数量
  • 于 2018-05-13 加入CSDN
获得成就
  • 获得264次点赞
  • 内容获得72次评论
  • 获得699次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #视觉/OpenCV#图像处理#机器学习#深度学习#自然语言处理#语音识别
TA的专栏
  • 医学计算机
    4篇
  • 笔记
    4篇
  • Pytorch
    23篇
  • 机器学习
    6篇
  • Java基础
    49篇
  • Matlab
    1篇
  • Java
  • Java 编程知识
    51篇
  • Java Web
    9篇
  • C++
    11篇
  • Python
    13篇
  • Windows
    9篇
  • Linux
    23篇
  • Ubuntu
    31篇
  • ROS
    2篇
  • opencv
    5篇
  • 深度学习
    8篇
  • openpose
    1篇
  • 其他
    10篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Python:Opencv 对图像/视频流的主要物体进行几何形状(如矩形、椭圆)拟合,并输出主要参数和拟合后的图像/视频

正经一句:拟合图像轮廓是指将边缘信息连接起来形成一个整体。通过对图像轮廓进行操作,可以获取目标图像的大小、位置和方向等信息。不多废话,直接上代码,使用说明在注释基本解释清楚,其他的靠自己英语,可以评论留言但我可能很久才会回复....import cv2 as cv # opencv版本为3.4.1.18 再高可能不兼容import numpy as npimport pandas as pdvideo_path = "" # 视频路径cap = cv.VideoCapture(vid
原创
64阅读
2评论
0点赞
发布博客于 1 月前

C/C++:写代码时将数组放在main函数里面还是外面的区别

刚开始学习的时候一直习惯起手先写main函数,然后变量什么的都写在main函数里面,也一直没有什么问题但是开始系统性的做题的时候,发现基本上讲竞赛代码的书和博客都将数组写在main函数的外面。如果一个数组并不是全局数组,他的作用域就只在main函数里面,为什么还要写在main函数的外面呢?之前一直不大理解,一直都图方便在main函数里面对数组进行定义。直到一次运行的时候,代码并没有问题,但是每次运行的时候都会出现停止工作的问题。测试了很久才发现是因为把数组开在了main函数里面的问题把数组开在m
原创
436阅读
0评论
5点赞
发布博客于 5 月前

Pytorch:nn.Module和网络模型构建步骤

模型说到模型模块的构建步骤,再来回顾一下Pytorch五大模块的流程《Pytorch:机器学习深度学习整个模型训练的总体步骤思路》模型模块的具体框架如下:模型创建具体通过代码表述...
原创
282阅读
0评论
0点赞
发布博客于 5 月前

top1,top5概念

几个概念1)正确率(accuracy)正确率是我们最常见的评价指标,accuracy = (TP+TN)/(P+N),这个很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好;2)错误率(error rate)错误率则与正确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accu...
原创
500阅读
0评论
1点赞
发布博客于 5 月前

Pytorch:离线下载预训练模型方法,如VGGNet,ResNet,DenseNet等

以Resnet18为例,在程序中输入from __future__ import print_function, divisionfrom torchvision import modelsmodel_ft = models.resnet18(pretrained=True)然后运行,就会出现如下再将这个网址复制到浏览器中,就可以直接下载Resnet18模型。下载结束后,将下载的文件放入你建立的python项目中,再运用如下代码就可以调用Resnet18模型。 model_f
原创
973阅读
0评论
1点赞
发布博客于 6 月前

实现html文件解析出dcm信息并转换成nii文件

主要是用bs4库来解析html信息,针对的是GE公司生成的dcm信息描述文件'''author: Sakura Yukidate: 2020-10-13 1:12 am'''from bs4 import BeautifulSoupimport reimport osurl = 'E:/data/new_data/GE3.0/2020.7.22-7.25/ihe_pdi/index.htm'soup = BeautifulSoup(open(url), 'lxml')# co.
原创
249阅读
0评论
0点赞
发布博客于 6 月前

解决:This application failed to start because it could not find or load the Qt platform plugin “xcb“

Linux系统下在未安装Qt相关组件时运行用Qt5编译好的程序会报以下错误:This application failed to start because it could not find or load the Qt platform plugin "xcb".出现这个错误,一般是因为缺少Qt5中的一个库文件依赖,即 libqt5dbus.so.5打开终端用以下命令即可解决:sudo apt-get install libqt5dbus5一般在再运行相关软件都可以成功了.
原创
1879阅读
0评论
0点赞
发布博客于 6 月前

Pytorch:关于numpy与PIL转换的问题

对数据集的处理会遇到很多的问题,相信这些问题也经常困扰各位,尤其是关于transforms的使用。不得不说这个库非常的好用,帮助我们节省了很多的时间,但是不可避免我们会遇到关于pytorch中的Tensor,numpy以及PIL之间的转化,这主要是因为transforms进行转换时接受的是PIL Image类型,要不会报错,下面就这一部分讲解一下这部分的转化。# 首先来说明一下如何使用transforms来进行定义from torchvision import datasets, transform
原创
676阅读
2评论
0点赞
发布博客于 6 月前

解决Chrome浏览器:无法从该网站添加应用、扩展程序或脚本

1、先将后缀名为.crx的扩展文件的后缀名改为.zip。2、然后将这个压缩文件解压到新文件夹中。3、打开Chrome浏览器的扩展程序,更多工具 -> 扩展程序4、打开开发者模式,然后点击“加载已解压的扩展程序”。5、此时定位到之前解压的文件夹即可。...
原创
646阅读
0评论
0点赞
发布博客于 6 月前

Shell:字符串的分割截取

Linux 分割字符串(shell substr)在shell中如果遇到要截取字符串的情况,可以调用awk中的substr来实现,但事实上,原来shell中本身就支持这种用法。一、截取字符变量的前n位(如:n=8),有5种方法如下:expr substr "$a" 1 8echo $a|awk '{print substr(,1,8)}'echo $a|cut -c1-8expr $a : '\(.\\).*'echo $a|dd bs=1 count=8 2>/de..
原创
2009阅读
0评论
0点赞
发布博客于 6 月前

Pytorch:实现查询当前可用GPU的可用空闲内存并按照内存从大到小顺序打印出来

原创
397阅读
0评论
0点赞
发布博客于 6 月前

Python/Pytorch:Tuple

原创
492阅读
0评论
0点赞
发布博客于 6 月前

softmax和sigmoid在分类任务中的意义区别

激活函数介绍对于熟悉机器学习或神经网络的读者来说,sigmoid与softmax两个激活函数并不陌生,但这两个激活函数在逻辑回归中应用,也是面试和笔试会问到的一些内容,掌握好这两个激活函数及其衍生的能力是很基础且重要的,下面为大家介绍下这两类激活函数。sigmoid激活函数从函数定义上来看,sigmoid激活函数的定义域能够取任何范围的实数,而返回的输出值在0到1的范围内。sigmoid函数也被称为S型函数,这是由于其函数曲线类似于S型,在下面的内容中可以看到。此外,该函数曲线也可以用于统计中,使用的是累
原创
202阅读
0评论
0点赞
发布博客于 7 月前

Ubuntu16.04 开机自动开启小键盘

安装一个插件,就可以解决这个问题打开终端输入sudo apt-get install numlockx完成后,再输入sudo gedit /etc/rc.local在最后一行exit 0前增加一下以下内容if [-x /usr/bin/numlockx ]; thennumlockx onfi保存后重启即可实现...
原创
170阅读
0评论
0点赞
发布博客于 7 月前

Linux 将terminal终端显示的内容保存到文本

快速将Linux终端内容保存到txt的办法:#使快速将Linux终端内容保存到txt的办法:#使用下面的指令创建或者打开保存信息的文件script -a xxx.txt#中间为终端输出的各种内容#使用下面的指令停止 保存exit#可以使用下面的质量在控制台显示 txt中保存的内容cat xxx.txt-a 指令表示在txt中追加内容。下面稍微扩充一下其他内容:获取当前路径的方法:pwd获取script 信息:info script退出信息显示界面:shift+q查看 scr
原创
330阅读
0评论
0点赞
发布博客于 7 月前

Linux:出现xxx:Permission denied的解决办法

如果有管理员权限,最好为sudosudo chmod -R 777 某一目录如果是普通用户,则不加sudo其中-R 是指级联应用到目录里的所有子目录和文件777 是所有用户都拥有最高权限
原创
560阅读
0评论
0点赞
发布博客于 8 月前

Linux:当修改不了bashrc文件时,尤其是在服务器上,环境变量添加或修改声明的方法(当前终端有效)

以调用cuda为例:export PATH=$PATH:/usr/local/cuda-10.1/binexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64:/usr/lib/x86_64-linux-gnu终端输入,敲入回车即可
原创
393阅读
0评论
0点赞
发布博客于 8 月前

Linux:无法读取exfat文件格式的解决办法

sudo apt-get install exfat-fuse exfat-utils
原创
581阅读
0评论
0点赞
发布博客于 8 月前

shell处理文件时的笔记(关于指定路径问题)

凡是最好都得用绝对路径,除非该shell在某个目录下,才可以使用一个单文件名或文件夹名进行衍生路径指明或其他的文件操作。
原创
74阅读
0评论
0点赞
发布博客于 8 月前

fetal brain reconstruction shell code

echo '------------------------------------------------------------'echoecho 'Script for fetal brain reconstruction'echo 'Author: Weijie Ma Date: 5 March, 2020'echo 'Reference: Michael Ebner et al. An automated framework for localization, segment.
原创
44阅读
0评论
0点赞
发布博客于 6 月前

动量Momentum梯度下降的简单理解

梯度下降是机器学习中用来使模型逼近真实分布的最小偏差的优化方法。在普通的随机梯度下降和批梯度下降当中,参数的更新是按照如下公式进行的:W = W - αdWb = b - αdb其中α是学习率,dW、db是cost function对w和b的偏导数。随机梯度下降和批梯度下降的区别是输入的数据分别是mini-batch和all。然而,看到下图的场景:可以看出在cost function的图像并不是那么“圆”的情况下,,从某一点开始的梯度下降过程是及其曲折的。并不是直接走向中心点,而是需要浪
原创
199阅读
0评论
1点赞
发布博客于 8 月前

Python:批量修改文件名,删除或替换某文件名里的字符串

import os# 输入你要更改文件的目录path = "E:/xxx"# 123是要查找文件名里包含123的文件originalname = '123'# 321是要被替换的字符串,如果就是删除originalname,那么replacename = ''就可以replacename = '321'def replace(path): files = os.listdir(path) # 得到文件夹下的所有文件名称 # 遍历文件夹 for file in .
原创
457阅读
0评论
0点赞
发布博客于 8 月前

Pytorch:正向传播推理(predict)出的outputs的值的每一个元素数为什么是两个或多个

两个或多个其实指的就是类别数,如果是一个二分类问题,就是两个。红框和蓝框分别代表了每个类别的推理值,(此时可能通过了激活函数或者未通过),反正最后就是将通过激活函数后的值进行比较大小,大者为识别的类别,即predict对应的label...
原创
296阅读
0评论
0点赞
发布博客于 8 月前

Pytorch:计算图像数据集的均值和标准差

在使用torchvision.transforms进行数据处理时我们经常进行的操作是:transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是标准差这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们但是如果你想要计算自己的数据集的均值和标准差,让其作为..
原创
757阅读
0评论
2点赞
发布博客于 8 月前

Python:根据文件名中的关键字,将文件名中含某一关键字的文件复制或移动到另一个目录

#-*- coding: UTF-8 -*-import osimport shutilsrc_dir_path = 'E:/PycharmProjects/CatDogData' # 源文件夹to_dir_path = 'E:/PycharmProjects/CatDogData/cat' # 存放复制文件的文件夹key = 'cat' # 源文件夹中的文件包含字符key则复制到to_dir_path文件夹中if not.
原创
920阅读
1评论
1点赞
发布博客于 8 月前

Pytorch:反transform操作,实现从tensor转成PIL image

该代码为transforms的反函数,实现从tensor转成PIL image,用于在框架的enumerate迭代中的中间图片可视化。代码思想如下,可以根据具体情况和需要进行修改def transform_invert(img_, transform_train): """ 将data 进行反transfrom操作 :param img_: tensor :param transform_train: torchvision.transforms :retu
原创
340阅读
0评论
1点赞
发布博客于 8 月前

Pytorch:transforms二十二种数据预处理方法及自定义transforms方法

transforms.normalize功能:逐channel地对图像进行标准化公式:output=(input - mean) / stdmean:各通道的均值std:各通道的标准差inplace:是否执行原地操作,默认False
原创
501阅读
0评论
1点赞
发布博客于 8 月前

Pytorch:transforms

transforms上篇博文《Pytorch:Dataloader和Dataset以及搭建数据部分的步骤》提到transforms是pytorch数据模块的预处理部分。transforms来自torchvision,torchvision是pytorch的计算机视觉工具包。torchvision有以下几个主要的模块:torchvision.transforms:常用的图像预处理方法torchvision.datasets:常用数据集的datasets实现,MNIST,CIFAR-10,Image
原创
175阅读
0评论
0点赞
发布博客于 8 月前

Pytorch:Dataloader和Dataset以及搭建数据部分的步骤

接下来几篇博文开始,介绍pytorch五大模块中的数据模块,所有概念都会以第四代人民币1元和100元纸币的二分类问题为例来具体介绍,在实例中明白相关知识。数据模块的结构体系数据模块分为数据的收集、划分、读取、预处理四部分,其中收集和划分是人工可以设定,而读取部分和预处理部分,pytorch有相应的函数和运行机制来实现。读取部分中pytorch靠dataloader这个数据读取机制来读取数据。DataloaderDataloader涉及两个部分,一是sampler部分,用于生成数据的索引(
原创
596阅读
0评论
0点赞
发布博客于 8 月前

Python:filter函数,lambda函数及一起使用

filter函数filter(self, /, *args, **kwargs) # 过滤filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。例如:实例def is_odd(n): return n % 2 == 1newlist = filter(is_od.
原创
182阅读
0评论
1点赞
发布博客于 9 月前

Pytorch:通过pytorch实现逻辑回归

逻辑回归logistic regression逻辑回归是线性的二分类模型(与线性回归的区别:线性回归是回归问题,而逻辑回归是线性回归+激活函数sigmoid=分类问题)模型表达式:f(x)称为sigmoid函数,也称为logistic函数,能将所有值映射到[0,1]区间,恰好符合概率分布,如下图所示[0,1]区间形成二分类,一般以中点值(0.5)做界标,即为什么说逻辑回归是线性的,是因为线性回归的wx+b与0的大小关系正好对应f(wx+b)中与0.5的大小关系,.
原创
4103阅读
1评论
2点赞
发布博客于 9 月前

Pytorch:机器学习深度学习整个模型训练的总体步骤思路

下面给出模型训练步骤的思路,在用pytorch(也包括其他框架)编写代码进行网络编写时,建议都按照这几个步骤来进行,形成一个清晰的思路各模块简要说明数据:涉及数据的采集、清洗、划分及预处理等模型:根据任务的复杂程度选择简单的线性模型或复杂的神经网络模型等损失函数:根据任务的不同选择不同的损失函数,比如线性回归模型采用均方差函数,分类任务采用交叉熵函数等优化器:根据损失函数求得的梯度来更新模型参数迭代训练: 确立好前四大模块后,进行反复的迭代训练...
原创
3879阅读
0评论
1点赞
发布博客于 9 月前

Pytorch:autograd 自动求导

神经网络离不开大量的梯度求导,若是交给人为计算,这将是十分耗时的一件事情。在pytorch中,autograd自动求导系统能有效解决这一问题。torch.autogradtorch.autograd.backward()(标量或向量的backward()方法实则也是调用了autograd.backward()方法)功能:自动求取梯度tensors:用于求导的张量,如lossretain_graph:保存计算图(pytorch采用的是动态图机制,所以在一次反向传播结束时会释放掉计算图的
原创
3546阅读
0评论
0点赞
发布博客于 9 月前

PyTorch中梯度为什么默认自动累加,在反向传播前要手动将梯度清零?

低显存跑大batchsize的角度这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)传统的训练函数,一个batch是这么训练的:for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cuda(non_blocking=True) target = torch.from_numpy(np.array(target)).
原创
3935阅读
0评论
2点赞
发布博客于 9 月前

Pytorch:计算图与动态图机制

计算图computational graph表示方法计算图是用来描述运算的有向无环图计算图有两个主要元素:结点(node)和边(edge)结点表示数据,如向量,矩阵,张量边表示运算,如加减乘除卷积等计算图不仅使计算显得简洁,更重要的是其表示梯度求导更为方便用计算图表示y=(x+w)*(w+1): 令 a=x+w b=w+1 则y=a*b梯度求导结合题例的算式和计算图表示 从上述的计算图表示中,可以看到,除...
原创
3550阅读
0评论
0点赞
发布博客于 9 月前

Pytorch:通过pytorch实现线性回归

线性回归Linear Regression线性回归是分析一个变量与另外一个(多个)变量之间关系的方法因变量:y 自变量:x 关系:线性 y=wx+b 分析:求解w,b求解步骤:1. 确定模型2. 选择损失函数3.求解梯度并更新w,b此题:1. model:y=wx+b2. MSE:3. w = w - LR*w.grad b = b - LR*w.grad下为代码实现import torchim...
原创
3530阅读
0评论
0点赞
发布博客于 9 月前

PyTorch:函数加下划线代表的意思

PyTorch中,一般函数加下划线代表直接在原来的 Tensor 上修改
原创
3670阅读
0评论
0点赞
发布博客于 9 月前

消融实验(ablation study)是什么?

Robert Long对消融研究(或消融实验)定义:通常用于神经网络,尤其是相对复杂的神经网络,如R-CNN。我们的想法是通过删除部分网络并研究网络的性能来了解网络“消融”的原始含义是手术切除身体组织。ablation 解释: 通过机械方法切除身体组织,如手术,从身体中去除,尤指器官、异常生长或有害物质。“消融研究”这一术语的根源于20世纪60年代和70年代的实验心理学领域,其中动物的大脑部分被移除以研究其对其行为的影响。在机器学习,特别是复杂的深度神经网络的背景下,已经采用“消融研究”
原创
2078阅读
0评论
2点赞
发布博客于 9 月前

Pytorch:Tensor 张量操作

张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维数,则新增一个维度) ...
原创
3994阅读
0评论
0点赞
发布博客于 9 月前

Pytorch:Tensor 张量的概念及张量的各种创建

Tensor 概念张量的数学概念:张量是一个多维数组,它是标量、向量、矩阵的高位扩展张量在pytorch中的概念:tensor之前是和pytorch早期版本中的variable一起使用的。variable是torch.autograd的数据类型,主要用于封装tensor,进行自动求导data:被包装的Tensorgrad:data的梯度grad_fn:创建Tensor的function,是自动求导的关键requires_grad:指示是否需要梯度is_leaf:指
原创
3787阅读
1评论
1点赞
发布博客于 9 月前

多核学习、多视图学习、多任务学习和集成学习的区别和联系

多核学习既可以用在多任务学习,也可以用在多视图学习,也有研究同时对多任务和多视图同时采用多核的,目前已经有通用多任务多核学习方法。如果将多核用在多任务学习,相当于不同任务共享子空间的同时,还有各自特有的一个空间,这个特有空间通过采用不同的核来表示。多任务中采用多核,由此强调任务个性。如果将多核用在多视图学习,不同视图的数据采用不同的核,相当于多源数据融合的一种方法,这些也早有研究。而无论是多任务,多视图还是多核,都是希望充分利用不同来源的数据,去提高模型的整体效果,知识在不同任务和视图之间互通...
原创
405阅读
0评论
2点赞
发布博客于 9 月前

机器学习:L1和L2正则化项的理解

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1\ell_1ℓ1​ -norm 和 ℓ2\ell_2ℓ2​ -norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(...
原创
223阅读
0评论
0点赞
发布博客于 9 月前

百度网盘不开会员,在线开启倍速功能

说起网盘,我们第一时间肯定会想到百度网盘。百度网盘里面有个倍速播放的功能,当我们看视频,特别是看教学视频的时候,能大大节约我们的时间,不过目前这个功能属于会员的专属特权。我们不开会员,能实现在线开启倍速功能,操作非常简单。一、软件自带火狐浏览器(pc端)操作:①在火狐浏览器,登陆百度网盘网页版,打开想要播放的视频界面②在视频播放窗口,点击右键,切换播放速度即可二、代码提速当然有些小伙伴现在用惯了谷歌浏览器,不想再去换,谷歌浏览器也可以实现哦,需要代码来协助..
原创
5541阅读
0评论
0点赞
发布博客于 9 月前

pip清华镜像源使用方法总结

临时使用pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package注意,simple不能少, 是https而不是http设为默认修改~/.config/pip/pip.conf(Linux)%APPDATA%\pip\pip.ini(Windows 10)$HOME/Library/Application Support/pip/pip.conf(macOS)(没有就创建一...
原创
1316阅读
0评论
1点赞
发布博客于 9 月前

Pytorch官网一直很卡进不去,离线下载pytorch各类版本安装包方法

进入https://download.pytorch.org/whl/torch_stable.html选择自己对应版本的pytorch或torchvision等等文件下载即可
原创
1077阅读
0评论
1点赞
发布博客于 9 月前

pytorch 计算 CrossEntropyLoss 和 softmax 激活层

pytorch 计算 CrossEntropyLoss 不需要经 softmax 层激活!用 pytorch 实现自己的网络时,如果使用CrossEntropyLoss 我总是将网路输出经 softmax激活层后再计算交叉熵损失是不对的。考虑样本空间的类集合为 {0,1,2},网络最后一层有 3 个神经元(每个神经元激活值代表对不同类的响应强度),某个样本送入网络后的输出记为 net_ou...
原创
407阅读
0评论
0点赞
发布博客于 1 年前

UserWarning:Implicit dimension choice for softmax has been deprecated. Change the call to include..

问题:UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. input = module(input)这个警告的原因是softmax()函数已经被弃用了,虽然程序还是可以运行成功,但是这个做法不被py...
原创
371阅读
0评论
0点赞
发布博客于 1 年前

TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory ..

在pytorch结合cuda下,直接使用output.data.numpy()会报标题错误:TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.解决办法:output.data.cpu().numpy()把CUD...
原创
799阅读
0评论
0点赞
发布博客于 1 年前

/opt是什么?linux中/usr和/opt的区别

说到/opt,常与/usr来一起对照说明:linux中/opt目录用来安装附加软件包,是用户级的程序目录,可以理解为D:/Software。安装到/opt目录下的程序,它所有的数据、库文件等等都是放在同个目录下面。opt有可选的意思,这里可以用于放置第三方大型软件(或游戏),当你不需要时,直接rm -rf掉即可。在硬盘容量不够时,也可将/opt单独挂载到其他磁盘上使用。linux中/u...
原创
825阅读
0评论
3点赞
发布博客于 1 年前

linux Ubuntu为例安装sublime text 3

下载Linux安装包:http://www.sublimetext.com/3得到:sublime_text_3_build_3200_x64.tar.bz2解压:tar -xvvf sublime_text_3_build_3200_x64.tar.bz2 sublime_text_3/sudo mv sublime_text_3/ /opt创建链接:sudo ln -s...
原创
201阅读
0评论
0点赞
发布博客于 1 年前

python删除文件中含"指定内容关键字"的一行

python运行版本:2.7 (3以上的版本需将里面不兼容的语句改写一下)#!/bin/env python import shutil, sys, os darray = [ "xxxxxxxxx", ";;;;;;;;;"] def isInArray (array, line): for item in array: if item in line: ...
原创
1838阅读
0评论
0点赞
发布博客于 1 年前

CondaVerificationError ... specified in the package manifest cannot be found 错误

使用conda install xxxxxx的时候报如下类似错误:CondaVerificationError....specified in the package manifest cannot be found.解决:删除缓存的包重新下载conda clean --packages --tarballs并重新再次conda install xxxx...
原创
461阅读
0评论
0点赞
发布博客于 1 年前

pip在虚拟环境(conda)中仍安装到全局下的问题

问题描述在用conda创建的虚拟环境中,使用pip安装包,包仍被安装到全局,或者显示权限不足。问题查找使用which pip会发现使用的pip仍为全局路径下的pip解决python -m pip install <package>...
原创
1855阅读
1评论
5点赞
发布博客于 1 年前

机器学习:多分类模型评价准则

机器学习中,遇见的往往是二分类问题比较多,二分类模型的模型评价准则很多,Auc_score,F1_score,accuracy等等都是比较常用的。而针对多分类问题来说,有些二分类的评价准则就相对而言不怎么适用了。虽然可以将多分类问题转化为多个2vs2问题进行讨论,步骤繁杂的同时效果也得不到保障。目前在进行多模态的一个分类研究,在模型评价时也废了不少脑筋,所以在这里将看到的比较常用的多分类评价准则进...
原创
270阅读
0评论
1点赞
发布博客于 1 年前

核函数的小理解

核方法升维主要的好处是线性可分。把本来非线性的特征,展开到线性了。原本两者同时存在需要做一个“与”操作 feature[1] & feature[2] == 1。有了第三维,只需要一个判断 feature[3] == 1 就可以了。在特征少或者简单的时候,还能这么一眼看出来,如果特征多,或者模式复杂的时候,核方法就能把复杂的模式分解到一个很容易解决的超平面里面来,用线性方法解。但这里,选用...
原创
106阅读
0评论
0点赞
发布博客于 1 年前

胎儿MRI高分辨率重建技术:现状与趋势(暂总结到2017年)

1, 胎儿MRI及其特点在产前影像检查中,超声是最常用的成像方式,但是由于对比度低、视野狭窄、信噪比低等原因不能不能很好地显示胎儿的细节结构,例如发育中的大脑、内脏等。如果超声检查中发现胎儿的一些疑似结构异常,使用MRI可以作为补充检查,提供更详细的结构信息,因为MRI有较好的软组织对比度,视野较大,信噪比高,无辐射,并且可以采集任意切面的图像信息,能看到一些超声中不易发现的结构。胎儿MRI正...
原创
440阅读
0评论
0点赞
发布博客于 1 年前

总变分(Total Variation)最小化方法(也称 TV minimization)

Rudin等人(Rudin1990)观察到,受噪声污染的图像的总变分比无噪图像的总变分明显的大。总变分定义为梯度幅值的积分: 其中;Du是图像的支持域。限制总变分就会限制噪声。...
原创
3278阅读
0评论
2点赞
发布博客于 1 年前

IEEE xplore论文文章免费下载方法

方法如下:1.找到某篇文章:https://ieeexplore.ieee.org/document/7965747查询到DOI是:10.1109/SERA.2017.79657472.打开http://sci-hub.tw输入10.1109/SERA.2017.7965747即可搜索...
原创
496阅读
0评论
0点赞
发布博客于 1 年前

以一个现实例子开始说起轻松理解条件随机场(CRF)

理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/]假设你有许多小明同学一天内不同时段的照片,...
原创
159阅读
0评论
0点赞
发布博客于 1 年前

Gabor 滤波简介与代码简单实现

Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。在人脸识别等领域有着很广泛的应用一、Gabor滤波简介Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。Gabor滤...
原创
410阅读
0评论
4点赞
发布博客于 1 年前

Ubuntu安装teamviewer(附带解决dpkg占用的代码)

sudo ps -ef | grep dpkg | awk -F ' ' '{print $2}' | xargs sudo kill -9;sudo ps -ef | grep apt | awk -F ' ' '{print $2}' | xargs sudo kill -9;sudo rm -rf /var/lib/dpkg/lock-frontend;sudo rm -rf /va...
原创
72阅读
0评论
0点赞
发布博客于 1 年前

使用print时出错 SyntaxError: Missing parentheses in call to 'print' Did you mean print("Usage....

Python2到Python3,很多基本的函数接口变了,甚至有些库或函数被去掉或改名了在Python 3.x中,print是函数,这意味着需要编写print (a)而不是print a,除此之外,它的工作方式和语句差不多。Python 2.x和Python 3.x中print函数语法方面的区别为:# Python 2.x: print a # 要打印的内容a不带括号 # Pyt...
原创
1442阅读
0评论
0点赞
发布博客于 1 年前

非root用户(普通用户)安装CMake

安装过程(以cmake版本3.11.1为例)1.首先从网站上下载,https://cmake.org/download/,下载源码包cmake-3.11.1.tar.gz然后放到服务器的某个位置进行解压tar -zvxf cmake-3.11.1.tar.gzcd cmake-3.11.1./bootstrap./configure --prefix=/home/xxx/xx...
原创
432阅读
0评论
0点赞
发布博客于 1 年前

Permanently added the RSA host key for IP address '13.229.188.59' Permission denied (publickey)fatal

这个应该是很多github新手经常出错的问题,这个就是没有在你github上添加一个公钥。下面就直接说步骤:1 可以用ssh -T git@github.com去测试一下图上可以明显看出缺少了公钥2 直接上图3. cat 一下 把出现的key 复制下来4 .在github上添加刚刚生成的公钥一切都好了 就ok 了 ,反正我的就好了,如果...
原创
127阅读
0评论
0点赞
发布博客于 1 年前

Python:nii格式的核磁共振图像(MRI)的读取、处理、显示操作(以缩放操作举例)

基于skimage的transform模块,实现3D图像的缩放(reszie),.nii格式图像。1. 代码功能:实现91*109*91图像,压缩为56*56*56大小结果示意:size: 109*91size: 56*562. 尝试cv2.resize()和np.resize()方法,均无法实现同样功能。3. import skimage可能报错,提...
原创
992阅读
0评论
1点赞
发布博客于 1 年前

Python中 opencv(cv2) SIFT与MSER的使用

SIFT:(注意,现仅个别opencv版本支持开源免费的SIFT、SURF算法函数,如3.4.2)import cv2import numpy as np img = cv2.imread('xxx.jpg')gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create() kp...
原创
577阅读
0评论
0点赞
发布博客于 1 年前

Python查看模块(变量、函数、类)方法

查看模块成员:dir()函数通过 dir() 函数,我们可以查看某指定模块包含的全部成员(包括变量、函数和类)。注意这里所指的全部成员,不仅包含可供我们调用的模块成员,还包含所有名称以双下划线“__”开头和结尾的成员,而这些“特殊”命名的成员,是为了在本模块中使用的,并不希望被其它文件调用。这里以导入 string 模块为例,string 模块包含操作字符串相关的大量方法,下面通过 dir(...
原创
454阅读
0评论
0点赞
发布博客于 1 年前

Ubuntu16.04 安装 notepad++(notepadqq)

安装notepad++sudo add-apt-repository ppa:notepadqq-team/notepadqq sudo apt-get update sudo apt-get install notepadqq第一步的时候需要确认,回车就行了卸载方法:sudo apt-get remove notepadqq sudo ad...
原创
490阅读
0评论
0点赞
发布博客于 1 年前

项目编译万能lib(待扩充)

sudo apt-get-yinstallgccg++makeprotobuf-compilerprotobuf-c-compilerlibprotoc-devcmake-guilibtesseract-devlibgoogle-glog-devlibvtk6-devlibavresample-devlibopenblas-baselibopenblas-devli...
原创
169阅读
0评论
0点赞
发布博客于 1 年前

Ubuntu编译googletest报错

执行make时遇到遇到以下错误:1./usr/include/c++/5/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the ...
原创
270阅读
0评论
1点赞
发布博客于 1 年前

Ubuntu终端的快捷键总结

ctrl - 字体缩小ctrl +(有的电脑是“ ctrl shift + ” 三个键同时按下)字体放大ctrl 0 恢复正常模式Tab 自动补全Ctrl+a 光标移动到开始位置Ctrl+e 光标移动到最末尾Ctrl+k 删除此处至末尾的所有内容Ctrl+u 删除此处至开始的所有内容Ctrl+d 删除当前字符Ctrl+h 删除当前字符前一个字符Ctrl+w 删除此处到...
原创
103阅读
0评论
0点赞
发布博客于 1 年前

关于./configure、cmake、make、make install 命令的介绍

这些都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤note:1.如果经常在Linux系统下面与C、C++文件打交道的话,一定经常遇到四/五步走:mkdir buildcd buildcmake ..make// 如果是安装依赖库的时候会用到 make install前两步并不难理解,就是想把对应项目的编译文件放在build目录下,这样便于管理...
原创
240阅读
0评论
2点赞
发布博客于 1 年前

配置anaconda国内(清华)镜像源

配置命令:添加清华anaconda镜像:conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda...
原创
2775阅读
0评论
3点赞
发布博客于 1 年前

cmake命令出错:Could NOT find PythonLibs (missing: PYTHON_LIBRARIES PYTHON_INCLUDE_DIRS)

问题:Could NOT find PythonLibs (missing: PYTHON_LIBRARIES PYTHON_INCLUDE_DIRS)解决办法cmake -DPYTHON_INCLUDE_DIR=/usr/include/python2.7 -DPYTHON_LIBRARY=/usr/lib/python2.7/config/libpython2.7.so ...
原创
5986阅读
0评论
1点赞
发布博客于 1 年前

CMake找不到库(如opencv)的解决办法

一、问题详情在ubuntu中使用CMake编译链接opencv库的程序时FIND_PACKAGE(OpenCV REQUIRED)报错,找不到opencv,信息如下:Found OpenCV Windows Pack but it has no binaries compatible with yourconfiguration.You should manually p...
原创
1132阅读
0评论
0点赞
发布博客于 1 年前

OpenCV多版本安装时方法

OpenCV在Ubuntu下经常会安装多个版本,比如默认版本,自己安装的,ros安装的等等。有时候需要给程序指定某个OpenCV版本,网上有一些方法,但还是会遇到很多问题。这里提供一种选择,即指定OpenCV目录及OpenCVConfig目录,保证能在正确的路径下寻找OpenCVConfig.cmake。cmake编译选项可以设置为cmake .. -DCMAKE_BUILD_TYP...
原创
103阅读
0评论
0点赞
发布博客于 1 年前

尺度空间的理解

不从数学上来推倒什么是尺度空间,只是从生活常识方面来解释尺度空间的意义,意义懂了,数学方面自然就好理解了。 好。首先我们提出一个问题,请看下面的图片,让我们我们人为的判断下所显示的左右图片中哪个的角尖锐?接下来我们慢慢的分析,在这其中我们会发现很有意思的事情。分析:图1(a)中,显然右边的角更尖锐,这是因为同左边的角相比其角度值较小。图1(b)中,也是右边的角...
原创
344阅读
0评论
2点赞
发布博客于 1 年前

剑桥CS教授“三遍论”高效读论文方法

嗑盐之始,在于读论文。一方面,把握最前沿的研究动态,激发自身研究灵感。另一方面,不做好文献调研,自己的绝妙想法变成了重复造轮子,这种体验可不太妙。那么,问题来了:到底该怎么读论文?每天单从arxiv上就能刷出成百上千篇新论文,顶会期间,论文更是如钱塘江大潮拍岸而来。如何才能不迷失在论文烟海之中,高效获取有效信息呢?这里奉上ACM和IEEE Fellow、剑桥大学计算机科学教授Sri...
原创
157阅读
0评论
0点赞
发布博客于 1 年前

MRIcron的dcm2nii数据转换

目前,脑成像数据主要有DTI、fmri、3D三种模态。这些数据在分析前都要进行格式转换,不同公司的扫描仪存储格式也不尽相同。脑成像处理软件也很多,不同软件使用的格式也不一样,所以数据转换是脑成像数据处理的第一步,必须非常清楚。这里介绍MRIcron的dcm2nii转换和MRIConvert转换. 从扫描中心下载的原始数据是以dicom数据格式存在的压缩文件,解压后...
原创
2849阅读
2评论
2点赞
发布博客于 1 年前

MRI:T1 T2 T1WI T2WI笔记

T1观察解剖结构较好。T2显示组织病变较好。水为长T1长T2,脂肪为短T1短T2。长T1为黑色,短T1为白色。长T2为白色,短T2为黑色。水T1黑,T2白。脂肪T1白,T2灰白。T2对出血敏感,因水T2呈白色。T1加权成像、T2加权成像所谓的加权就是“突出”的意思T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别T2加权成像(T2WI)-...
原创
460阅读
0评论
1点赞
发布博客于 2 年前

Windows下MatConvNet编译 mex setup中vl_compilenn时cl.exe缺失及vl_imreadjpeg出错遇到问题

使用的环境Windows 10 + Matlab R2019a + VS2017 + MatConvNet-1.0-beta21 + CPU模式因为不需要使用显卡和CUDA,直接下载安装包,添加路径执行命令mex -setup C++addpath matlabvl_compilenn错误信息如下:解决办法在VS的根目录下搜cl.exe文件 将其...
原创
568阅读
0评论
0点赞
发布博客于 2 年前

DNN、CNN、RNN、LSTM的区别

广义上来说,NN(或是DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是从狭义上来说,单独的DNN、CNN、RNN及LSTM也可以对比。DNN(深度神经网络)神经网络是基于感知机的扩展,而DNN可以理解为有很多隐藏层的神经网络。多层神经网络和深度神经网络DNN其实也是指的一个东西,D...
原创
1158阅读
0评论
0点赞
发布博客于 2 年前

Windows LTSC、LTSB、Server 安装 Microsoft Store 应用商店

下载安装包打开网址https://store.rg-adguard.net/以PackageFamilyName 方式搜索Microsoft.WindowsStore_8wekyb3d8bbwe根据系统选择对应的包,每一种都要下载安装在下载目录或者自己新创建的目录下按住 shift 键,然后鼠标右键,打开 Powershell执行安装命令...
原创
15812阅读
6评论
1点赞
发布博客于 2 年前

Python:axis=0 axis=1的理解

官方文档解释:轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。注意看,官方对于0和1的解释是轴,也就是坐标轴。而坐标轴是有方向的,所以千万不要用行和列的思维去想axis,因为行和列是没有方向的,这样想会在遇到不同的例子时感到困惑。根据官方的说法,1表示横轴,方向从左到右;0表示纵轴,方向从上到下。当axis=1时,数组...
原创
176阅读
0评论
0点赞
发布博客于 2 年前

深度学习:梯度下降法数学表示式的详细推导

很多深度学习的书籍以及网上介绍深度学习的相关文章里面介绍了梯度法求损失函数最优化,但很少会解释梯度法的数学式是怎么得出来的,经过一番数学推理和文献查找(其实Ian Goodfellow等著的《深度学习》也没有通俗解释,用了晦涩的语言和符号表示,没有具体说明,参见其第四章第三节),做此笔记。梯度通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数...
原创
764阅读
0评论
0点赞
发布博客于 2 年前

Java题库练习.zip

关于Java语言的一些编程题和问答题的收集整理, 密码hchs
zip
发布资源于 2 年前

LINUX 下制作 WINDOWS U盘启动盘

准备工作:下载Windows10 ISOU 盘(最好>=8G)安装 WOEUSB由于 Deepin(Debain-based) 没有 Prebuilt Packages,所以直接从源代码构建。以下内容都是 Debain-based 版本适用。1.在想要存放源代码的地方克隆 WoeUSB 仓库:git clone https://github.com/slacka...
原创
11256阅读
1评论
3点赞
发布博客于 2 年前

Ubuntu 16.04 在ros上使用Kinect2教程 (freenect驱动及iai_kinect的安装)

安装libfreenect:相关依赖:sudo apt-get install build-essential cmake pkg-configsudo apt-get install libusb-1.0-0-devsudo apt-get install libturbojpeg libjpeg-turbo8-devsudo apt-get install libglfw3-d...
原创
1627阅读
0评论
1点赞
发布博客于 2 年前

面试必备的 200+ Java面试题(附详解答案)

适宜阅读人群需要面试的初/中/高级 java 程序员 想要查漏补缺的人 想要不断完善和扩充自己 java 技术栈的人 java 面试官面试题模块介绍面试题包含的内容了十九了模块:Java 基础、容器、多线程、反射、对象拷贝、Java Web 模块、异常、网络、设计模式、Spring/Spring MVC、Spring Boot/Spring Cloud、Hibernate、Myba...
转载
206阅读
2评论
0点赞
发布博客于 2 年前

C++:string 截取字符串

string str="123abc456"; int i=3;1 取字符串的前i个字符str=str.Substring(0,i); // orstr=str.Remove(i,str.Length-i);2 去掉字符串的前i个字符:str=str.Remove(0,i); // or str=str.Substring(i);3 从右边开始取...
原创
1243阅读
0评论
3点赞
发布博客于 2 年前

C++:string 与 char* 及与 char[ ] 之间的转换

string可以被看成是以字符为元素的一种容器,字符构成序列(字符串)。有时候在字符序列中进行遍历,标准的string类提供了STL容器接口。具有一些成员函数比如begin()、end(),迭代器可以根据他们进行定位。注意,与char*不同的是,string不一定以NULL('\0')结束。string长度可以根据length()得到,string可以根据下标访问。所以,不能将string...
原创
69阅读
0评论
1点赞
发布博客于 2 年前

Ubuntu 16.04 安装 OpenPose 1.6.0 全教程,附显卡以及训练框架详细安装步骤

安装之前,需要先安装caffe。caffe安装详细教程:https://blog.csdn.net/DragonGirI/article/details/97614130,详细到只需复制粘贴(当然,得结合实际)。官方全英文安装文档:https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/installat...
原创
3024阅读
0评论
2点赞
发布博客于 2 年前

Ubuntu16.04 Caffe系列 最新更新安装教程 附NVIDIA显卡安装及cuda、cudnn、caffe的安装

博文版本:NVIDIA 418.74(对应显卡2070,如果是1060的请下载较低版本的),cuda 10.0, cudnn 7.6.2, opencv 3.4.3总结了一些网上其他教程的坑并已修改,按照博文和普行计算机,不出意外,这是准确而又超快速度的安装总结。勘误联系方式:onyxiakylin@outlook.com第1步 安装依赖包安装后续步骤或环境必需的依赖包,依次...
原创
2225阅读
0评论
1点赞
发布博客于 2 年前

六种强大的姿态识别估计的深度学习模型和代码

姿态估计的目标是在RGB图像或视频中描绘出人体的形状,这是一种多方面任务,其中包含了目标检测、姿态估计、分割等等。有些需要在非水平表面进行定位的应用可能也会用到姿态估计,例如图形、增强现实或者人机交互。姿态估计同样包含许多基于3D物体的辨认。英文版:https://modelzoo.co/blog/deep-learning-models-and-code-for-pose-es...
翻译
7393阅读
0评论
5点赞
发布博客于 2 年前

/usr/bin/ld: cannot find -l(...XXX) 问题的解决办法

在ubuntu上安装软件时,经常出现这样的问题:/usr/bin/ld: cannot find -l****例如:/usr/bin/ld: cannot find -lcaffe安装 需要caffe的相关软件 时出现这些问题都是因为找不到相应的lib文件,以上面的例子来说就是在系统中找不到libcaffe.so文件。以libcaffe.so为例,我们先在系统中查找下该...
原创
2865阅读
0评论
0点赞
发布博客于 2 年前

Caffe安装中多版本protobuf选择问题,版本过高

在ubuntu下安装caffe时,使用make all命令后,经常会报出protobuf版本冲突的问题,如下:In file included from .build_release/src/caffe/proto/caffe.pb.cc:5:0:.build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file ...
原创
898阅读
0评论
0点赞
发布博客于 2 年前

caffe/blob.hpp:9:34: fatal error: caffe/proto/caffe.pb.h: 没有那个文件或目录

转到caffe目录下,运行以下代码:protoc src/caffe/proto/caffe.proto --cpp_out=.mkdir include/caffe/protomv src/caffe/proto/caffe.pb.h include/caffe/proto
原创
1456阅读
0评论
3点赞
发布博客于 2 年前

编译caffe最后,运行make run test时出现: error while loading shared libraries: libcudart.so.9.1: cannot open...

出现如下错误:(这里注意看报错的提示,这很重要).build_release/tools/caffe.build_release/tools/caffe: error while loading shared libraries: libcudart.so.9.0: cannot open shared object file: No such file or directoryMa...
原创
730阅读
0评论
0点赞
发布博客于 2 年前

sudo apt-get update出现 W: GPG 错误:http://packages.ros.org/ros/ubuntu xenial InRelease: 由于没有公钥,无法验证下列签名

错误:W: GPG 错误:http://packages.ros.org/ros/ubuntu xenial InRelease: 由于没有公钥,无法验证下列签名: NO_PUBKEY F42ED6FBAB17C654W: 仓库 “http://packages.ros.org/ros/ubuntu xenial InRelease” 没有数字签名。N: 无法认证来自该源的数据,所以使用...
原创
4446阅读
2评论
4点赞
发布博客于 2 年前

OpenCV:绘图操作

OpenCV提供了一些基本的绘图操作,比如画圆,画椭圆,画线,画矩形,在图像里插入文字等功能。圆画圆使用的是circle函数,必须提供的参数是:画在出的圆显示在哪里,圆心,半径,以及画线的颜色。 //圆心 Point center = Point(255,255); //半径 int r = 100; //承载图像 Mat picture...
原创
131阅读
0评论
0点赞
发布博客于 2 年前